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Abstract: Two double-spend attack strategies on a proof-of-stake consensus are considered. For each
strategy, the probability of its success is obtained, which depends on the network parameters and the
number of confirmation blocks. These results can be used to define how many confirmation blocks a
vendor should wait after a correspondent transaction before sending goods or services.
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1. Introduction

Since Bitcoin launched in 2009, blockchain systems and distributed ledger technologies
have become popular, received widespread adoption, and attracted significant research
effort [1].

They provide a great use case and have big advantages in environments that require
no trust. That includes various financial applications (DeFi), cryptocurrencies, different
types of distributed registries, etc. The decentralized blockchain-based systems provide
the common view on the history of transaction ledger, censorship resistance, and no single
point of failure.

Although, comparing to the centralized approach, a decentralized environment has
much longer latencies on transaction confirmations. As there is no central server(s), the
majority of network nodes in a trustless environment should receive a new transaction,
validate it, and share that with other nodes, working in conditions with delayed message
delivery over the network.

Moreover, some part of network participants may be well coordinated by an adversary
who attacks the system. At the same time, honest nodes have no ability to discern the
malicious behavior until an attack is finished (with any result).

Within such conditions, a distributed system user must decide whether she accepts
the transaction (and provides corresponding services or goods for the accepted value) or
she should wait for higher confirmation assurance (or just reject the transaction).

For many practical applications, such as on-line exchanges or retail, it is critical to
minimize the confirmation time latency.

So, on given input parameters (such as the adversarial ratio among all nodes reaching
consensus), it is important to define concrete criterion regarding when a transaction may
be secure and accepted with low risk and when it should be removed from the final history
of the blockchain.

Thus, the special case of persistence, as one of two major ledger properties [2], needs
to be analyzed: the resistance to the double-spend attack. The essence of this attack does
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not depend on the type of consensus protocol. Technically, it happens as follows. An
adversary carries out some transaction in the block with number i, transferring coins to a
supplier of goods for some purchase. The supplier receives those coins and accordingly
supplies the goods to the buyer. The adversary also starts mining (forging) a different block
with the same height i—that is, a block following the block with number (i–1), but one that
either does not contain this transaction—or he transfers coins to another one of his own
accounts. To guarantee acceptance of this alternative chain by honest participants, he tries
to “hook” as many blocks as possible to the alternative block at height i. If he succeeds in
making the alternative chain longer, then exactly this chain, according to the consensus
protocol, will be the one that is considered correct. Obviously, the larger the share kept by
the adversary (it is not essential whether is it computing power in the case of PoW or a
share of a stake in the case of PoS), the higher chance his attack has of being successful.
In particular, if the share of the adversary is not less than 1/2, then the probability of the
attack success is equal to 1.

A double-spend attack may seem to be very similar to a selfish mining attack, but they
have two main differences. The first difference consists in their purposes: the purpose of a
double-spend attack is to use the same coin for two (or more) different payments, creating
conflicting transactions; the purpose of a selfish mining attack is to generate essentially
more blocks than is expected for a given adversary’s ratio and, therefore, to get profit that
is not proportional to his share. The second difference yields from the first one: in the
double-spend attack, an adversary should keep his alternative branch in secret until the
necessary number of confirmation blocks are created; therefore, he builds this chain only by
himself, while in selfish mining, honest miners see the alternative chain and occasionally
may maintain its creation.

In this work, we investigate only the security of the general model of PoS protocol
against a double-spend attack under only one assumption, which is quite standard: the
probability that the next block is generated by some stakeholder is proportional to its stake.
Our innovative contribution is that we for the first time obtain formulas for exact values
of probability of a double-spend attack, unlike lots of previous papers, which give only
asymptotic estimations of such probabilities or their upper bounds, which for some sets of
parameters are trivial (i.e., take values that are ≥1). Informally speaking, such papers state:
“if you are waiting for an infinitely long time, the probability that an adversary may invert
your transaction is infinitely small”. However, nobody wants to wait an infinitely long
time; the vendor wants to know exactly how many confirmation blocks he should wait
to be sure (with some predefined probability) that transaction is irreversible. Our results
are just for such case—for an arbitrary ratio of adversaries and numbers of confirmation
blocks, the vendor can achieve the following:

(1) For a given number of confirmation blocks, calculate the probability that his transac-
tion is irreversible; or

(2) Set some desirable level of probability (say, 0.999) and calculate the minimal number
of confirmation blocks he should wait to be sure that his transaction is irreversible.

A more detailed comparative analysis between our results and previous works will be
given in the next section.

We also give a lot of examples of numerical results, which were obtained according
our formulas, and corresponding graphs. They also confirm the correctness and practical
benefits of the statements and formulas obtained in this work.

2. Related Work

The first mention of a double-spend attack and its detailed description was made by
Nakamoto in his historical paper [3].

To ensure protection against this attack in Bitcoin, Nakamoto proposed not to supply
the goods as soon as the transaction occurred, but to wait for some time, more precisely
for a number of confirmation blocks, and only then, if the transaction has not disappeared
from the blockchain, to supply the goods. In this case, the adversary cannot open his



Sensors 2021, 21, 6408 3 of 13

alternative chain immediately after the payment, as then the provider will see that the
transaction disappears and then appears in the blockchain and thus reject the transaction.
For this reason, the adversary first waits until the block with the transaction “grows” by
the required number of confirmation blocks. During this waiting period, he can try to
seamlessly generate a fork that starts before the block with the transaction; that is, in our
notations, he may generate an alternative ith block with the blocks to follow, but in no case
does he share this alternative chain during the confirmation period, so that the supplier
will not suspect anything bad. This is the first stage of the attack. However, when the
confirmation blocks are formed and the goods are received, the adversary tries to “catch
up” with the existing chain, and this is the second stage of the attack. Suppose that while
six confirmation blocks are being generated, the adversary was able to generate four blocks
of the alternative chain. Now, he lags behind by at least two blocks. If ever in the future
he is able to generate as many blocks as it is needed to “catch up” with the existing chain,
which, in turn, will also grow all the time, then the attack will be successful. In particular,
if he managed to generate seven or more blocks at the first stage of the attack while he
waited for the confirmation blocks, then the attack was already successful: there is nothing
to catch up. Having received the goods, he simply presents his own longer chain, in which
the money remains with him.

Now, the next question is: how many confirmation blocks should the supplier wait?
In other words, for the given network parameters and given (arbitrarily small) ε > 0, what
number of confirmation blocks after a transaction should he wait for a probability of a
successful attack to be smaller than that given ε?

The answer to this question, given in [3] by Nakamoto and in [4] by Saleh, requires
correction. The assumptions made in [3] do not quite correspond to the real deployment
model. The first assumption is that the time of generation of the block and the time of its
appearance in the network coincide, so the block propagation delay is zero. However, from
this assumption, it follows that the probability of an “accidental” fork is zero, but reality
shows that such forks happen [5]. The second assumption states that the random variable,
which is equal to the number of attempts that honest miners do to generate z confirmation
blocks, where p is the probability of success, is replaced by its expectation z

p . Due to these
assumptions, the number of confirmation blocks in [3] is underestimated.

After [3], the probability of a double-spending attack was analyzed in papers [6,7],
which also have some lacks, including unproved statements. For the first time, the problem
gets a fully correct solution in [8], which is really wonderful from the mathematical point of
view. In this paper, the authors prove that the process of generating “honest”/”dishonest”
blocks in the network is described by a negative binomial distribution. It was first proved
in this paper, using special functions, that the fork probability decreases exponentially with
the growth of the number of confirmation blocks.

However, the authors of [8] could not and even did not try to get rid of the same
assumption on the instantaneous propagation of the block in the network.

The work [9] generalized the results obtained in [8]. In this work, for the first time (in
model with continuous time, without simplified assumptions about discrete timeslots), the
author obtained and strictly proved the expression that gives the value of double-spend at-
tack probability in dependence on network parameters, including network synchronization
time.

Note that all these works [3,4,6–9] investigate proof-of-work consensus protocol, but
there are still no analogical results for proof-of-stake [10–12]. However, consensus protocol
proof-of-stake is much more preferable than proof-of-work from a lot of points of view.
The main problems that occur on block generation with PoW consensus are the following:

− Miners must be on-line and continuously solve PoW puzzles;
− Huge energy consumption to generate a block with an acceptable security level;
− Occasional forks where parts of work made by honest miners are lost.
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To solve these problems, as well as several other ones, a proof-of-stake-based approach
was proposed. The first provable secure PoS was presented in [13] as well as its next
generations [14–17].

The main idea of PoS consensus is randomized slot leader selection; i.e., a participant
who forges the next block is randomly selected in a non-biased way to issue the block
within a given period of time. The probability to become a slot leader is proportional to
the stake owned by the participant. A detailed description of PoS approaches is given
in [13–19], as well as definitions, a model with strict formalizations, and security proofs.

For the first time, the rationale for the robustness of PoS protocol was given in [13]
under the standard assumption that slot leaders are chosen among stakeholders with prob-
abilities that are proportional to their stakes. To assure such an assumption, an Ouroboros
protocol was proposed, which was modified and improved in the next papers [13–16]:

- Ouroboros (Classic) [13]—the first provable secure PoS consensus protocol;
- Ouroboros Praos [14]—security against fully-adaptive corruption in the semi-synchronous

model;
- Ouroboros Genesis [15]—security with a dynamic participation model;
- Ouroboros Chronos [16]—a provable secure PoS consensus protocol that is indepen-

dent of global time.

The statements formulated about PoS security in [13] are “general”; they concern such
properties of protocol as “liveness” and “persistence”. Informally speaking, the deeper
the block, the higher the probability that it is stable. Most of the statements about block
stabilization given in [13] are upper estimations of probabilities (which sometimes turn out
to be trivial for certain values of parameters) or descriptions of their asymptotic behavior.
Such results persuade us that the probability of block stabilization increases fast when
the depth of the block increases, but it cannot be used to calculate the minimal number of
confirmation blocks after which we are sure that the block is stable.

A lot of papers published every year analyze different additional properties and
applications of PoS protocols. Among others, we can note [20], where the authors combine
PoS protocol with secure BTC blockchain to obtain a consistent subchain; [21] analyzes the
liveness of sidechains, built on PoS, using a special multisignature; [22] discusses PoS with
a digital signature scheme that prevents the validators from creating multiple blocks at
the same height; [23] considers two cases of smart-contracts of blockchain with PoS; [24] is
also devoted to the use of smart-contracts on a private Ethereum blockchain. These works
analyze some special aspects of PoS security, but none of them give the answer on such
a simple, practical, and specific question: how many confirmation blocks is enough to
guaranty block stability with a given probability?

In our paper, we provide analytical estimations of a double-spend attack in the covert
adversary model for an arbitrary version of Ouroboros protocol.

Our estimations are strict (not asymptotic), which allows using them to define a neces-
sary number of transaction confirmation blocks that is sufficient to make the transaction
irreversible with any given probability (e.g., 1–10−3).

It is interesting that the estimations obtained in this work for PoS protocol are very
close to the corresponding results for PoW protocols, which were firstly obtained with
a full mathematical background in [8]. However, for obtaining such estimations, rather
different probabilistic methods were used (e.g., random processes with continuous time
for PoW and random sequences for PoS).

Our analytical estimations allowed obtaining concrete values of the confirmation of
block numbers depending on system parameters (including adversarial stake participating
in consensus) and building dependence diagrams for them.

3. Materials and Methods

In this section, we describe two possible strategies for the implementation of a double-
spend attack. The first one is more universal; it is suitable for almost any consensus
protocol. It was first proposed by Nakamoto in his historical work [3] for PoW consensus
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protocol. The second one is specific for the PoS (and, may be, for some limited class of
other) protocol. For both strategies, we give exact analytical expressions for the probability
of success of the attack, which depends only on an adversary’s ratio and the number of
confirmation blocks that the vendor should wait before sending goods. We stress that these
expressions are non-asymptotical, so they may be also used for such purpose as to find the
minimal number of confirmation blocks, which guarantees that the attack probability is
less than some predefined small value, such as ε = 10−3 or less.

Note that the security of some object, model, system, or process against any attack is
defined by two main parameters: the computational efforts (or/and, maybe, the volume
of memory) needed for the successful implementation of this attack and probability of its
success. If the adversary needs unreachable computational efforts to implement the attack
with significant probability during some appropriate period of time, or if the probability of
attack is negligible, we say that this object (model, system process, etc.) is secure against
this attack.

In the model of a double-spend attack discussed in our work, we make some assump-
tions in favor of the adversary: we assume that he has unlimited time to implement the
attack. Recall that the adversary’s ratio, which is defined by his stake, is minority, i.e., less
than 50%.

In this section, we are going to prove the next result: for arbitrary adversary’s ratio
of 0 ≤ q < 1

2 and arbitrarily small ε > 0, there is such z = z(q, ε) that after z confirmation
blocks the probability of a double-spend attack, which is implemented according to the
strategies described below, is less than this given ε. It means that the vendor can reduce the
probability of a double-spend attack to an arbitrarily small and negligible value, waiting
for some certain number of confirmation blocks. In other words, in such a manner, we can
achieve an arbitrarily large level of security of PoS protocol against a double-spend attack,
even in the model when the adversary has unlimited time (but a minority of stake).

In what follows, we will use the next designations. Let B0, B1, . . . , Bn be blocks of
the blockchain, and let some transaction with a payment for the vendor be included into
block Bi, for some i ∈ N. Then, the vendor waits until z blocks have been linked after this
block to be sufficiently certain the sender cannot prune it.

At the same time, the adversary (sender) wants to prune the block Bi with his transac-
tion and take money back.

In this model, the adversary tries to organize a branch point in block Bi−1, just before
the block with the transaction. We will consider two different strategies of the adversary.

3.1. Strategy 1: Description of Attack and Estimation of Probability of Its Success

The adversary does not form his blocks in his timeslots in the chain that honest miners
build. Instead, he starts to form an alternative branch with a branch point (BP) in Bi−1,
where block Bi is pruned: B1, . . . , Bi−1, B′i , B′i+1, . . . . After z blocks Bi+1, Bi+2, . . . , Bi+z
are formed, he tries to make his alternative branch longer.

Note that according to this strategy (during the attack, the adversary does not form
his blocks in the”honest” branch) all blocks in the chain, starting from Bi−1, are formed by
honest parties.

To succeed, the adversary must build an alternative chain that is longer than the
“honest” one. It is possible only in case if, in some timeslot with number s, after the
blocks Bi+1, Bi+2, . . . , Bi+z are formed, the number of “adversary’s” timeslots between
the timeslot that corresponds to the block Bi−1 (let it be the timeslot with the number t) and
the timeslot with number s, is not less than the number of “honest” timeslots on the same
time interval. In this case, the adversary can form the alternative chain:

B1, . . . , Bi−1, B′i , B′i+1, . . . ,

for some r, where all blocks are formed in his timeslots, and block B′r is formed in timeslot
number s.
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Hence, the necessary and sufficient condition for the successful attack is the existence
of such a sequence of timeslots after the timeslot with number t, where the number of
“malicious” slots is not less than the number of “honest” slots.

To find the probability for successful attack, we will use the random excursions model
(REM) [12].

Firstly, we need to formalize the problem using REM.
We assume that among n parties, t are malicious (t < n/2) and n− t are honest. So,

the probability that an arbitrary timeslot is honest is p = (n− t)/n, and the probability of a
malicious timeslot is q = t/n.

Let ξi, i ≥ 1 be a Bernoulli random variable (RV),

ξi =

{
−1, with probability q,
1, with probability p.

. (1)

Here, a random sequence ξi, i ≥ 1 describes the distribution of timeslots in the
blockchain. If ξi = 1, then the slot leader of the ith timeslot is honest; if ξi = −1, then he is
malicious.

Let us define the following random variables:

S0 = 0, Sn =
n

∑
i=1

ξi, (2)

S+
0 = 0, S+

n =
n

∑
i=1

(ξi ∨ 0),

S−0 = 0, S−n =
n

∑
i=1

(−ξi ∨ 0). (3)

The physical senses of these random variables are the following:

- S+
n , n = 0, 1, . . . is equal to the number of timeslots that the honest slot leader has on

the interval between the slot with the number 0 and the slot with the number n;
- S−n , n = 0, 1, . . . is the analogical value for the number of the adversary’s slots;
- Sn, n = 0, 1, . . . is equal to S+

n − S−n ; i.e., the difference between “honest” and “mali-
cious” slots.

In this model, we consider a random excursion that starts at the moment t, so there
are z + 1 “honest” blocks after it, before the adversary tries to build an alternative branch.
He can use only timeslots after block Bi−1, because this block is a branch point (BP).

Fix some k ∈ N and let us define a new random variable

τk = min
{

l ≥ 1 : S+
l = k

}
.

Here, τk is the number of timeslots, such that on the interval [0, τk], there exists exactly
k slots, which belong to the honest slot leaders.

Now, in this definition, our purpose is to find the probability of the event

A(k) =
{
∃m > τk : S−m ≥ S+

m
}

,

for k = z + 1, where S−m , S+
m are defined according to (1)–(3).

The event A(k) is just the event that after k confirmation blocks were built, at some
moment, the adversary managed to build the longer chain using his timeslots.

In what follows, we need the result in a random excursion, “gambler ruin prob-
lem” [25]. We formulate this result as the next lemma.

Lemma 1. ([25]). In designations (1)–(3), let us define

S(k)
n = Sn + k, S(k)

0 = k.
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Let Ck be the next event: Ck =
{
∃l ∈ N : S(k)

l = 0
}

, and qk be its probability:
qk = P(Ck). Then

qn =

{
1, i f q ≥ p,(

q
p

)k
, else

.

Informally speaking, this lemma states that if at some moment an adversary with a
stake ratio q is k blocks behind, the probability that he will catch up (during unlimited time)

is
(

q
p

)k
.

To prove our main result, we also need some definitions and properties of special
functions [6,7]. The matter is that the probability of this attack can be expressed in terms of
a well-known special function: a regularized incomplete beta function. Now, we give its
definition and main properties that are used in the statements presented below.

Definition 1. Regularized incomplete beta function is the function.

Ix(a, b) =
∞

∑
l=a

Cl
b+l−1xl(1− x)b =

Bx(a, b)
B(a, b)

, (4)

where Bx(a, b) =
x∫

0
ta−1(1− t)b−1dt is an incomplete beta function,

B(a, b) = B1(a, b) =
1∫

0
ta−1(1− t)b−1dt = Γ(a)Γ(b)

Γ(a,b) is a beta function,

Γ(x) =
∞∫
0

tx−1e−tdt is a gamma function.

Lemma 2. ([26]). The regularized incomplete beta function satisfies the symmetry relation:

Ip(a, b) + Iq(a, b) = 1 for 0 ≤ p, q ≤ 1, p + q = 1.

From Lemma 2 and definition of inverse binomial distribution, we get the next corol-
lary.

Corollary 1. In our designations,
z
∑

l=0
Cl

z+lq
z+1 pl =

∞
∑

l=z+1
Cl

z+l pz+1ql .

Now, we are ready to formulate the next theorem.

Theorem 1. In our designations, the next equality for probability of a double-spend attack after z
confirmation blocks is true:

P(A(z + 1)) = 2
z

∑
l=0

Cl
z+l plqz+1, (5)

or using the local Moivre–Laplace theorem, for appropriate p, q and z:

P(A(z + 1)) = 2p
z

∑
l=0

ϕ

(
zq−lp√
(z+l)pq

)
√
(z + l)pq

, (6)

or using a regularized incomplete beta function:

P(A(z + 1)) = 2Iq(z + 1, z + 1), (7)
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and, finally, for sufficiently large z:

P(A(z + 1)) = O
(
(4pq)z+1

)
. (8)

Proof of Theorem 1. Define the events:

Hl = {τz+1 = z + 1 + l} =
{

S−τz+1
= l
}

, l ∈ {0, 1, . . .}.

Event Hl means that the adversary accumulated exactly l blocks before the time when
slot τz begins.

Note that Hl , l ∈ {0, 1, . . .}, forms the full group of events.
Then, according to the composite probability formula:

P(A(z + 1)) =
∞

∑
l=0

P
(

A(z + 1)
Hl

)
P(Hl). (9)

The probabilities of Hl , l ∈ {0, 1, . . .}, have a negative binomial distribution:

P(Hl) = Cl
z+1+l−1 pz+1ql = Cl

z+l pz+1ql , (10)

where
∞

∑
l=0

Cl
z+l pz+1ql = 1. (11)

According to Lemma 1,

P
(

A(z + 1)
Hl

)
=

{ (
q
p

)z+1−l
, when q < p and l < z + 1;

1, else (when q ≥ p or l ≥ z + 1).
. (12)

Then, rewrite (9) using (10)–(12) and obtain:

P(A(z + 1)) =
z
∑

l=0
Cl

z+l pz+1ql
(

q
p

)z+1−l
+

∞
∑

l=z+1
Cl

z+l pz+1ql =

=
z
∑

l=0
Cl

z+l pz+1ql +
∞
∑

l=z+1
Cl

z+l pz+1ql = 1−
∞
∑

l=z+1
Cl

z+l pz+1ql +
∞
∑

l=z+1
Cl

z+l pz+1ql
(13)

From the definition 1, Formula (4), Lemma 2, Corollary 1, and (13), we obtain:

P(A(z + 1)) = 1− Ip(z + 1, z + 1) + Iq(z + 1, z + 1) = 2Iq(z + 1, z + 1) =

= 2
z

∑
l=0

Cl
z+lq

z+1 pl ,

and Formulas (5) and (7) are proved.
To prove (6), for appropriate z, p, and q (i.e., when zpq > 25 or when p ≤ 0.9

and npq > 25), we rewrite Cl
z+l pz+1ql as p · Cl

z+l pzql and use the local Moivre-Laplace
theorem [25] for (5):

Cl
z+l pzql =

ϕ

(
zq−lp√
(z+l)pq

)
√
(z + l)pq

,

where ϕ(x) is the standard normal distribution density, ϕ(x) = e−
x2
2√

2π
.

To prove (8), note that [26]
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Iq(z + 1, z + 1) = 1
2 I4q(1−q)

(
z + 1, 1

2

)
= 1

2 I4qp

(
z + 1, 1

2

)
, when 0 ≤ q ≤ 1

2 , and for
fixed x, b (b > 0, 0 < x < 1) and for a→ ∞ , for each n = 0, 1, . . ., the next equality is
true:

Ix(a, b) = Γ(a + b)xa(1− x)b−1

(
n−1

∑
k=0

1
Γ(a + k + 1)Γ(b− k)

(
x

1− x

)k
+ O

(
1

Γ(a + k + 1)

))

So, for n = 0, we obtain:

P(A(z + 1)) = 2Iq(z + 1, z + 1) = I4pq

(
z + 1,

1
2

)
=

= Γ(z + 1.5)(4pq)z+1(1− 4pq)−
1
2 ×O

(
1

Γ(z + 2)

)
= O

(
(4pq)z+1

)
The theorem is proved. �

3.2. Strategy 2: Description of Attack and Estimation of Probability of Its Success

In this strategy, the adversary forms his blocks in the same way that honest parties do
all the time and issues them to both “honest” and “malicious” chains, but his purpose is
the same: to choose some appropriate moment for building a longer alternative chain with
the branch point in Bi−1 and with block Bi without his transaction.

As in the previous case, in this alternative chain, he may use all his timeslots after
the slot in which Bi−1 was formed. The main difference is that all blocks in this chain are
formed in the successive timeslots without missing, i.e., to form z “honest” blocks after Bi,
we need just z timeslots.

To make the alternative chain with a branch point in Bi−1, the adversary can use all
his timeslots after (i− 1)th (in which Bi−1 was formed). Then, on the interval from Bi to
Bi+z, he may have from 0 to (z + 1) timeslots.

We will use the same REM, defined in (1), (2), with q < p, q + p = 1.
For some k ∈ N, define the event: E(k) = {∃m ≥ k : S−m ≥ S+

m}.
We are interested in finding the probability P(E(z + 1)).

Theorem 2. In our designations, the probability of a double-spend attack, according to Strategy 2
and after z confirmation blocks, is:

P(E(z + 1)) = (2q)z+1. (14)

Proof of Theorem 2. Let us define the events:

Hl =
{

S−z+1 = l
}

, l = 0, z + 1

Event Hl means that the adversary accumulated l timeslot between timeslot t1, which
corresponds to block Bi−1, and timeslot t2, which corresponds to block Bi+z.

Note that Hl , l ∈ {0, 1, . . .} forms the full group of events.
Then, according to the composite probability formula:

P(E(z + 1)) =
z+1

∑
l=0

P
(

E(z + 1)
Hl

)
P(Hl). (15)

Probabilities of Hl , l ∈ {0, 1, . . .} are the probabilities of binomial distribution:

P(Hl) = Cl
z+1ql pz+1−l , l = 0, z + 1. (16)
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Probabilities of P
(

E(z+1)
Hl

)
can be obtained according to Lemma 1:

P
(

E(z + 1)
Hl

)
=

{ (
q
p

)z+1−l
, when q < p and l ≤ z + 1;

1 , else.
. (17)

Then, rewrite (15) using (16) and (17) and obtain:

P(E(z + 1)) =
z+1
∑

l=0
Cj

z+1ql pz+1−l
(

q
p

)z+1−l
=

z+1
∑

l=0
Cl

z+1qz+1

= qz+1
z+1
∑

l=0
Cl

z+1 = qz+1 · 2z+1 = (2q)z+1.

The theorem is proved. �

4. Results and Discussion

Figure 1 below gives the dependency of the logarithm value of probability P(A(z + 1))
of a double-spend attack under z confirmation blocks, which were obtained in (7) (on the
Y-axis), on the value z (on the X-axis), for different adversary ratios. As long as the graphics
for the logarithm of probability are straight lines, then the value P(A(z + 1)) decreases
exponentially with the growth of z. According to the Formula (8), the function decrease
rate P(A(z + 1)) with the growth of z is the same as for function (4pq)z+1.
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Figure 1. The logarithms of a double-spend attack probability for a different adversary ratio of q.

It is interesting that the probability of a double-spend attack in PoS consensus in the
synchronous model turns out to be equal to the probability of the same attack in PoW
consensus under the assumption of zero synchronization time [8]. However, the methods
of obtaining these two results for these two consensuses are essentially different.

Using our results, we can now reasonably recommend to the vendor how many
confirmation blocks he should wait after the correspondent transaction before sending
goods or services. The only information we need to set is the stake share of the alleged
attacker. This information we can get from the different mining pools’ observations and
analysis, which shows us that some mining pool(s) behaves suspiciously.
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Table 1 below shows some values P(A(z + 1)) = 2Iq(z + 1, z + 1), according (7), for a
different ratio q of the adversary and different numbers of confirmation blocks z.

Table 1. Double-spend attack probability P(A(z)) = 2Iq(z, z).

q
z 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

5 0.00178184 0.0112573262 0.03916288 0.0978546142 0.19761732 0.343438571 0.53313536 0.7571581092

10 7.85976466 × 10−6 0.000288 0.0031582412 0.0178065586 0.0651067138 0.1749472008 0.372184042 0.657928176

15 3.9252264 × 10−8 0.00000822 0.000284 0.0035685234 0.023307658 0.095273444 0.2724259 0.58606496

20 2.0678238 × 10−10 0.000000248 0.0000268 0.000748 0.008673864 0.053573446 0.20411726 0.52863006

25 1.1224685 × 10−12 7.7 × 10−9 0.00000258 0.0001606 0.0033027272 0.030712034 0.155151124 0.48059132

30 6.2112992 × 10−15 2.44 × 10−10 0.000000256 0.000035 0.001276 0.0178373424 0.119104008 0.439334368

35 3.4834258 × 10−17 7.8 × 10−12 2.54 × 10−8 0.00000776 0.0005 0.010458206 0.092100486 0.40328124

40 1.9729538 × 10−19 2.52 × 10−13 2.56 × 10−9 0.00000173 0.0001966 0.006176008 0.07162062 0.37138602

45 1.1259474 × 10−21 8.22 × 10−15 2.6 × 10−10 0.000000388 0.000078 0.0036679232 0.055944968 0.34290956

50 6.4643644 × 10−24 2.7 × 10−16 2.66 × 10−11 8.76 × 10−8 0.000031 0.0021883948 0.0438608842 0.317304398

55 3.7294886 × 10−26 8.86 × 10−18 2.72 × 10−12 1.99 × 10−8 0.00001244 0.00131 0.03449248 0.29415038

60 2.1603519 × 10−28 2.94 × 10−19 2.8 × 10−13 4.52 × 10−9 0.000005 0.000788 0.027195754 0.27311594

65 1.2556658 × 10−30 9.72 × 10−21 2.9 × 10−14 0.000000001 0.00000202 0.000474 0.021490666 0.2539335

70 7.319504 × 10−33 3.24 × 10−22 3 × 10−15 2.36 × 10−10 0.000000814 0.000286 0.017015502 0.23638314

75 4.277356 × 10−35 1.078 × 10−23 3.12 × 10−16 5.44 × 10−11 0.00000033 0.0001734 0.013495322 0.22028128

80 2.5050494 × 10−37 3.6 × 10−25 3.24 × 10−17 1.252 × 10−11 1.338 × 10−7 0.000105 0.010719656 0.20547284

85 1.4699092 × 10−39 1.208 × 10−26 3.38 × 10−18 2.88 × 10−12 5.44 × 10−8 0.0000638 0.008526426 0.1918252

90 8.639796 × 10−42 4.06 × 10−28 3.52 × 10−19 6.66 × 10−13 2.22 × 10−8 0.0000388 0.006790194 0.17922406

95 5.085998 × 10−44 1.36 × 10−29 3.68 × 10−20 1.54 × 10−13 0.000000009 0.0000236 0.005413464 0.16756998

100 2.9980656 × 10−46 4.58 × 10−31 3.86 × 10−21 3.56 × 10−14 3.68 × 10−9 0.0000144 0.0043201898 0.156775866

In Table 2, we show the minimal values of z, for a different ratio q, which provides
the condition P(A(z)) < 10−3. It means that if the vendor waits for such a number of
confirmation blocks, the probability of a double-spend attack, even during an infinitely
large amount of time, is less than 10−3.

Table 2. Minimal numbers of confirmation blocks for different adversary ratios.

q 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

P(A(z)) < 10−3 7.85976466 × 10−6 0.000288 0.000284 0.000748 0.0033027 0.000788 0.00047 0.00099

z 10 10 15 20 25 60 150 540

Note that our results once more demonstrate that PoS protocol is more preferable than
PoW from the point of view of its security against a double-spend attack. The matter is
that usually, the timeslots are large enough (comparing with the synchronization time)
so that the slot leader can create a block and share it among other participants during
his timeslot. So, we may neglect the network synchronization time and work with a
synchronous model, in which the security level against the double-spend attack is defined
only by the adversary’s stake ratio. However, in PoW, the synchronization time plays a
very important role. As shown in [9,27], the security threshold (the minimal adversary
ratio that can implement the attack with probability 1 despite the number of confirmation
blocks) decreases when the synchronization time increases, and in the case of a large
synchronization time, even an adversary with a minority hashrate can implement the
attack with probability 1).
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5. Conclusions

We researched two types of strategies for a double-spend attack and give strictly
proved expressions for success probabilities for both of them. Note that comparing
Formulas (7) and (14), we see that Strategy 1 is always more preferable for the adver-
sary than Strategy 2. Indeed, under condition p > 1

2 > q, we get the next inequality:

4pq > 4 · 1
2

q = 2q

So, the success probability in Strategy 2 is less than the same probability in Strategy 1
under the same values of q and z.

Using the results obtained, one can define the necessary number of confirmation
blocks to make this probability negligible.

There are two interesting questions that we would like to investigate in our next
works:

1. To consider an asynchronous model, where the adversary can delay the message
delivery for honest slot leaders for some significant period of time, for example, equal
to several timeslots, and analyze the probability of a double-spend attack in a such
model.

2. To obtain similar results in a case when the adversary has only a limited period of
time to implement his attack. Such models occur when, for example, the blockchain
has checkpoints, and the adversary can create a fork only in the period before the next
checkpoint.
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